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Numerical Advection Experiments With Higher Order, 
Accurate, Semimomenturn Approximations 
JOSEPH P. GERRITY, JR.-Development Division, National Meteorological Center, 
NOAA. Suitland, Md. 

ABSTRACT-Work published in 1968 by Crowley is based on the semimomentum scheme are competitive with 
adapted to study the truncation error associated with the the best results obtained by Crowley with conservation 
semimomentum scheme for approximating advection. schemes and comparable to fine-mesh calculations. 
The results indicate that higher order approximations 

1. INTRODUCTION 

This note will document a brief investigation of the use 
of higher order accuracy in the approximation of ad- 
vection. The basic motivation for the study was to obtain 
a comparison between methods proposed in an earlier 
paper (Gerrity et al. 1972) and those studied by Crowley 
(1968). 

Using the same analytical data as Crowley, we have 
made calculations with several variations of the semi- 
momentum scheme for approximation of one-dimensional 
advection. The various approximations differ in theoretical 
accuracy. The particular data used by Crowley are 
characterized by local discontinuities in the first deriva- 
tives of both the initial field of the advected quantity 
and the advecting wind field. This fact causes some dis- 
crepancy between the theoretical properties of the finite- 
difference schemes and their performance in this test. 
Despite this logical problem, certain results were obtained 
that merit some notice. 

2. EQUATION AND DATA 

We are concerned here only with the one-dimensional 
calculations reported in Crowley’s (1968) paper. The 
equation used is called the color equation. It expresses 
the conservation of a fluid property, +, following the 
motion of a particle; that is, 

-&=-+u a a+ a+ -=o 
at ax * 

The coefficient u is. the velocity of the fluid particle; in 
P the present case, it is taken to be a function of 2 as follows: 

U ( X )  =0.9- 1.6 x/L O I x I L / 2 ,  

and (2 1 
u(x f L) = u ( x )  . 

U ( X )  = -0.7+ 1.6 x/L L/2 I x I L, 

Crowley observes that, since u varies with x, one may 
write the nontrivial generalization of eq (1) as 

(3) 

His numerical experiments were designed to illuminate 
the distinction between finite-difference approximations 
based on eq (l), .“advection schemes,” and those based 
on eq (3)) “conservation schemes.” His conclusion is that 
a fourth-order, accurate, conservation scheme is superior 
to the other methods tested. 

An analytic approach to the solution of eq (1) would 
naturally be based on the construction of the character- 
istic curves in the (5 ,  t )  plane. The physical meaning of 
the equation is that the property + does not vary along 
such curves, which one may consider to be particle 
trajectories. 

Using eq ( 2 )  and the definition 

ax 
z=U, (4) 

one may prove that the fluid particles will all repeat their 
relative positions, but displaced a distance L in the posi- 
tive x direction, after a time interval, T, where 

T=-ln[ 2L u(x=O) ] . 
1.6 u(x=L/~)  (5) 

Thus, if one knows the distribution of + at some initial 
time and if that distribution is periodic in the x coordinate 
with period L, one may assert that the distribution of + 
should recur after a time lapse of T time units. 

In  the case studies, L=36 grid intervals of unit length. 
The value of the interval of repetition, T, may be given 
in seconds as 

T=- ln(9)=98.87. (6) 
72 
1.6 

Following Crowley, we carried out the integration 
through 10 such intervals, or approximately 989 s. The 
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numerical solutions obtained a t  that time were compared 
with the analytic solution. It should be noted that the 
variation of u with x gives rise to a change in shape, as 
well as a translation, of the field #. 

, 

The field # a t  the initial time was set up to be 

#(x>=ln(0.9-1.6x/L) O<x<L/2, 

#( 2) =In (- 0.7 + 1.6x/L) L/2<x<L, 
and (7 1 

# (x f L) = # (4 

in agreement with Crowley’s method. It should be noted 
that the analytical property of repetition of the solution 
does not depend on this specific relationship between # 
and u. 

The function #(x) defined in eq (7) has the Fourier 
spectrum given in table 1. During the integration, the 
shape of the function # will change; therefore, one cannot 
apply simple estimates of truncation error to this problem. 
We may note, however, that a lack of symmetry in a 
numerical solution may be caused by an underestimate of 
the “frequency” of the simulated problem, rather than 
by spurious dispersion. 

3. THE SEMIMOMENTUM SCHEME 

The basic finite-difference scheme used in this study is 
the semimomentum scheme introduced by Shuman (1962). 
Allowing At and Ax to stand for the time and space grid- 
mesh intervals, one may define symbolic, finite-diff erence 
operators. Let 

A = ~ ( x = ~ A x ,  t = n ~ t )  (8) 

where the discrete function f is defined only for integral 
values of .the indices n and j .  Our basic approximation of 
the first difference of the function is defined by the operator 

or, for the time difference, 

Since this approximation requires the use of undefined 
values of the function, one must couple the difference 
operation with an interpolation operator. A basic inter- 
polation operator may be given the symbolic definition 

or, for spatial interpdlation, 
-2 

[fl =+(f?+1/2+f’i-1/2). (lob) 

If one uses a Taylor series expansion of the function f, 
one may show that these basic operations of differencing 
and interpolation possess second-order accuracy in the 
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TABLE 1.-The spectral content o j  the junction + ( x )  at the initial time. 
Mean  value of fi is -0.8566. 

Amplitude Fourier index I Fourier index Amplitude 

0.7652 
. 1846 
. 1444 
.0677 
.0634 
. 0363 
.0370 
.0236 
.0254 

10 
11 
12 
13 
14 
15 . 
16 
17 
18 

0.0173 
.0194 
.0138 
.0161 
.0119 
. 0143 
.0109 
: 0135 
.0053 

grid intervals. Thus, for functions with bounded deriva- 
tives, the err.or of approximation goes to zero as (At)’ or 
(Ax)’. 

The semimomentum approximation of eq (1) may be 
written as 

(11) -1 

[#I1 =-tm”r#lz) * 

The time derivative is a simple centered-difference ap- 
proximation of second-order accuracy. The term, semimo- 
mentum, refers to the characteristic combination used to 
approximate the product term. Notice that the un- 
differentiated coefficient, the wind, is subjected to an 
interpolation, or a filter, prior to its multiplication by 
the derivative. The product is then subjected to a further 
interpolation, which is necessary if a staggered grid is not 
used. 

If one wishes to improve the theoretical accuracy of this 
difference method, one may modify the order of accuracy 
of each operator more or less independently. In  an earlier 
paper (Gerrity et al. 1972), we used such an approach for 
the integration of the shallow water equations with 
generally positive results. 

To simply express the higher order, accurate, finite- 
difference operators, one should generalize the symbolic 
notation of eq (9) and (10). Only spatial variation will 
be considered since second-order accuracy in the time 
derivatives is sufficient for most meteorological problems. 
We define, with m an integer, 

(13) 

One may again use Taylor series expansions to  show 
that the following operators have fourth-order accu- 
racy in Ax: 

and 

-zn 4 

[fl =%fl -m3z (14) 

[flz, = 9[fl.-i[f132 (15) 

where the subscript h is used to  denote the higher order 
nature of the approximati,on. These operators may be 
combined with the second-order operators to produce the 



following eight, mixed forms for the approximation of the 
advection term in eq (1) : I 

I n  view of Crowley’s success with the conservation 
form for the approximation of the advection equation, it 
is worthwhile noting that certain of the forms (expression 
16) have conservation analogs, such as 

whereas precise conservation analogs probably do not 
exist for other forms; for example, 

One should also observe that the mixed higher order, 
accurate, approximations cannot be applied uniformly 
over the entire region of integration. As the boundaries are 
approached, one must, switch to lower order schemes or 
introduce computational boundary conditions. In  the 
study reported here, periodicity was assumed so that the 
higher order schemes were applicable over the entire 
spatial domain. 

A principal alternative to the use of higher order, accu- 
rate, finite-difference schemes involves the use of a reduced 
size of the grid mesh, Ax,  or At. In  this study, we considered 
an integration based on a finer mesh version of eq (11). 
The space mesh, A x ,  was reduced to one-half its value in 
other calculations. To maintain linear computational 
stability, we also reduced the time mesh, At, to  one-half 
its value. 

4. RESULTS 

There are a considerable number of comparisons that 
might be made among the several solutions that were 
calculated. Since the problem studied may be easily 
keplicated by other investigators, we shall confine our 
discussion to comparisons that are particularly suggestive. 

I n  figure 1, we illustrate a deficiency of the formulation 
of the problem as a test for the significance of higher order, 
accurate, finite-difference approximations. This figure 
depicts the analytic solution (shown everywhere as curve 
T) and the two approximations, 

-8  $ --- 
1- x, 

shown as curve A ,  

-2 4 
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FIGURE 1.-Numerical solutions after 10 intervals of repetition. 
Curve A was calculated using $t=-z$2zl curve B calculated 
using 

--I - 
--t 

and curve T is the analytic solution. 
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FIGURE 2.-Numerical solutions after 10 intervals of repetition. 
- 1  

Curve B was calculated with $l=-m, curve C was inter- 
polated from Crowley’s .figure showing the result of a fourth- 
order accurate conservation scheme, and curve T is the analytic 
solution. 

and 

(20) 
shown as curve B. 

This result is surprising, showing as it does a somewhat 
worse result when the higher order approximations were 
used. It is possible to account for this dilemma by ob- 
serving that, at  the singular points of the wind field, 
yields a superior estimate of the wind in comparison to 
Gzh. The theoretical superiority of uzh depends upon 
the function having a relatively smooth variation. Except 
in the neighborhood of the singular points, the two ap- 
proximations are identical. The situation is much the same 
with respect to the derivative of $. Initially, the derivative 
is discontinuous a t  two points and elsewhere slowly 
varying. Consequently, $2h is not everywhere more 
accurate than t j 2  as would be the case with a regular 
function. 

- St=-z&h , 
1 
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FIGURE 3.-NUmerical solutions after 10 intervals of repetition. 
Curve A was calculated with fine mesh using $:=-;ii”3.~ , curve 

- -z 

- t  -h 
B was calculated with regular mesh using $ t = - 3 $ z h  , and 
curve T is the analytic solution. 

I n  figure 2, we show the result of 

-t 
ljt=-%p 

as curve B and Crowley’s best result as curve C. I n  view of 
eq ( I  7b), one may regard eq (21) as displaying a reasonable 
analog to the “conservation” property emphasized by 
Crowley. ‘The equivalent fourth-order accuracy of eq (21) 
may be attributed to the redundant character of the 
semimomen tum approxima tion’s lattice structure, the 
preservation of equivalent fine-mesh accuracy by the 
interpolation operator, and the relatively “long-wave” 
structure of the advected field, $ (cf. table 1). 

It is our opinion that, in a more general case, one would 
find that the use of fourth-order estimates of the first 
derivative would be beneficial to the accuracy of the 
solution. It should be noted that the use of eq (21) re- 
quired a reduction of the time step, so that 

A somewhat larger value might be used, but instability 
was encountered when 

Little significance need be attached to this reduction 
in time step allowed by higher order advection estimates. 
The limit time step in meteorological prediction is as- 
sociated with gravity waves, not with advective processes. 

I n  figure 3, we present a final result. Curve A denotes the 
result obtained using eq. (19) on the fine mesh. Curve B 
shows the result obtained with the form, 

-1 
+ r = -  (24) 

The mean-square errors with these two methods are 
0.0377 for eq (24); and 0.0274 for the fine-mesh calcula- 
tion. The mean square error for eq (21), shown as curve B 
in figure 2, is 0.0094. 

Comparison of curve A in figure 3 with curve A in 
figure 1 shows that a considerable improvement in accuracy 
was obtained by using a finer mesh. It is particularly 
noteworthy, however, that the results obtained ivith the 
higher order interpolation operator (curve B in figure 2) 
and by Crowley (curve C in figure 2) are both somewhat 
more accurate than the fine-mesh calculation. 

5. CONCLUSIONS 

The results obtained in this study substantiate the 
view that higher order approximations. or finer mesh 
grids are equally valid methods for attaining greater ac- 
curacy in the numerical solution of meteorological equa- 
tions. Of the two methods, the higher order scheme appears 
to be more efficient and accurate. 

The simple approach employed to formulate higher order 
approximations based upon the semimomentum difference 
scheme gave excellent results, quite comparable to  the 
conservation scheme used by Crowley. The analytic data 
used in the study were not sufficiently general to  permit a 
satisfactory assessment of the full range of difference 
schemes. T o  accommodate evaluation of the performance 
of the higher order derivative, one might try to modify the 
form of the advected field. 

Further study of the long-term computational stability 
of the higher order approximations should be conducted. 
Additionally, an evaluation of the requirement for compu- 
tational boundary conditions for use with higher order 
schemes is required. 
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